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The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modu-
larity, short and long range interactions, spatial correlations, and topographical connections. Particularly inter-
esting, the latter type of organization implies special demands on developing systems in order to achieve
precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive
biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical
connections in the mammalian brain remains an elusive issue. The present work reports on how recent results
from complex network formalism can be used to quantify and model the effect of topographical connections
between neuronal cells over the connectivity of the network. While the topographical mapping between two
cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are
adopted for implementing intramodular connections, including random, preferential-attachment, short-range,
and long-range networks. It is shown that, though spatially uniform and simple, topographical connections
between modules can lead to major changes in the network properties in some specific cases, depending on
intramodular connections schemes, fostering more effective intercommunication between the involved neu-
ronal cells and modules. The possible implications of such effects on cortical operation are discussed.
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I. INTRODUCTION

Among the vast spectrum of natural phenomena involving
intense information exchange between spatially distributed
elements, the mammalian cortex stands out as particularly
complex and intriguingf1g. While the full understanding of
this organ still represents one of the biggest challenges to
science, continuing investigations in the areas of neu-
roanatomy, neurophysiology, neurogenetics, and neuroinfor-
matics have provided a wealth of information about its orga-
nizational principles. It is currently known that the
mammalian neocortex is characterized by coexistence of hi-
erarchy, modularity, short and long range connections, spatial
correlations, and topographical maps. Two neuronal modules
are said to be topopographically connected if adjacent neu-
rons of the input layer connect to adjacent neurons of the
output layerse.g., f2,3gd. One of the most distinctive and
ubiquitous properties of the mammalian brain are the topo-
graphical connections between its several modulesf3–5g. In
the visual system, for example, the cortical region LGNsi.e.,
lateral geniculate nucleusd connects topographically to the
cortical region V1, and then to V2 and furtherse.g.,f6–8gd.
The fact that such modules exchange information vertically
along the hierarchies while communicating horizontally with
other modules in the same hierarchical level has motivated a
computational model known as multistage integrationf5g.
Indeed, cortical feedback through such connections seems to
be essential for achieving important functionalities such as
orientation selectivityf9g. Sensory cortical modules are not
only topographically connected between themselves, but also
receive topographically structured representations of the in-
put stimuli. In the visual system, for instance, we have the

visiotopic maps which have been identified as being impor-
tant for target detectionf10g. At the same time, the functional
characteristics of the cells distributed along the cortical sur-
face have been shown to be highly correlated, in the sense
that cells that are close one another tend to have similar
functions se.g. f3,11gd. It is very likely that such organiza-
tional principles are not accidental or secondary. Contrari-
wise, it is possible that such geometrical arrangement of the
cortical circuitry may be essential for proper information
processing. The main purpose of the present work is to ana-
lyze modular topographical connections in terms of the in-
teresting and powerful concepts and measurements supplied
by graph theoryf21g. The basic structure of the cortical con-
nections, which is shared by many species, is likely to be the
result of an attempt at optimizing several conflicting require-
ments simultaneously, including minimal wiring, minimal
metabolism or energy, number of cortical areas, as well as
molecular and genetical constraintsf12g. The minimal wiring
requirement, and henceforth minimal transmission delay, has
often been identified in the literature as the most important
requirement shaping cortical connectionsf13–16g. The spe-
cial efforts invested by the central nervous system in imple-
menting topographical connections provide a primary indica-
tion that such a kind of strategy plays an important role in
minimizing connectivity requirements while guaranteeing ef-
fective cortical processing.

The importance of maintaining spatial relationships and
adjacencies through several cortical modules can, in prin-
ciple, be associated to the following putative requirements or
properties derived from experimental findings and computa-
tional theory.

Adjacency. As extensively indicated by experimental in-
vestigations, neighboring neurons tend to have similar func-
tionalities, implying spatial correlation of neuronal activity
along the cortical surface. Such an organization also ac-
counts for a certain degree of redundancy.*FAX: 155 16 3373 9879. Email address: luciano@if.sc.usp.br

PHYSICAL REVIEW E 71, 021901s2005d

1539-3755/2005/71s2d/021901s7d/$23.00 ©2005 The American Physical Society021901-1



Accessibility. Neural operation involves intensive ex-
change of information along time and space. In order that
decisions can be taken timely, it is important that neurons
enrolled in cooperative processing have effective access to
information in any of the enrolled cells. Information acces-
sibility can be quantified in terms of time or distance, and
can be estimated inside the same cortical module or between
different modules. High accessibility demands more connec-
tions between neurons, with the highest possible degree be-
ing achieved when each cell is directly connected to every
other cell. In other words, connectivity tends to favor acces-
sibility.

Parallelism. As neuronal cells are relatively slow process-
ing units, real-time cortical operation requires parallel and
distributed processing. It is important to observe that some
parallel processing paradigms, such as vector processing and
pipelining, do not necessarily lead to intense combinatorial
connections between all involved modules.

Broadcasting. Another important mechanism possibly un-
derlying information transmission isbroadcasting. Unlike
point-to-point intercommunication, broadcasting is charac-
terized by the fact that the same information is sent to several
other neurons. Broadcasting can be particularly useful for
neural modulation and control. While wide broadcasting can
take place along time, short term action demands high levels
of neuronal connections.

Though it is not currently clear how these features are
adopted and combined at different cortical regions in order to
allow emergence of proper behavior, it is only through the
quantitative characterization of network connectivity and
spatial constraints that new hypotheses and further experi-
mental investigation, including functional evaluation, can be
obtained and validated. In order to better appreciate the pos-
sible implications of topographical connections for cortical
architecture, it is also important to consider the connectivity
patterns intrinsic to cortical modules. As there is no current
agreement on whether the local cortical connections follow
randomf17g or selective attachmentf18,19g, both situations
are considered in the present study.

While the connections underlying neuronal networks can
naturally be represented in terms of graphs, the recent inter-
est in complex networksf20g has paved the way to charac-
terize properties of such structures with respect to both their
connections and organization, especially in terms of the node
degreesi.e., the number of connections of each neurond, av-
erage length and clustering coefficientf20–22g. Graph theory
f21g thus provides several concepts and tools for measuring,
modeling and validating several aspects of cortical geometry
and functionality.

The present work reports on the potential of applying
complex network formalism to investigate in a quantitative
manner the effects that topographical connections may have
in modifying properties of the involved cortical modules,
with special attention given to their connectivity. The neu-
ronal cells, each represented by a network node, are assumed
to be uniformly distributed over the cortical module. The
connections inside each modular network follow four differ-
ent architectures: preferential-attachmentsPATd, random net-
work sRANd, short-range networksSHRd and long-range
network sLNRd, which will be detailed later. Topographical

connections between two such cortical modules A and B are
established by linking each node of A to the nearest node in
B with probabilityb. In order to quantify the impact of such
topographical connections over the network properties, sev-
eral measurements of connectivity are obtained while the de-
gree of topographical coupling between modules A and B,
quantified in terms of the probabilityb, is increased. Further-
more, we measure the same network properties for random
connections between A and B in order to establish a com-
parison with the topographical connections case. We also
consider uni- and bidirectional connections between modules
for both topographical and random intermodular models, as
further explained below.

The article starts by introducing the adopted network ter-
minology as well as the several measurements considered for
characterization of the properties of the investigated net-
works. The obtained simulation results characterize the
changes of the network properties in terms of the topographi-
cal coupling, indicating that topographical connections can
have major impact over the properties of the involved net-
works.

II. MODELS AND METHODS

The cortical modules, withN nodes connected throughn
directed edges, are embedded into anL3L two-dimensional
spaceV representing the cortical domain associated to each
module. Each network nodei, i =1,2, . . . ,N, is randomly po-
sitioned at coordinatesxi ,yid. The number of nodes in each
module isN=RoundsgL2d whereg is the density of nodes
and Round is the rounding function. The connections inside
each cortical module are implemented as follows: a pair of
selected nodes establishes a connection if a random number,
uniformly distributed betweenf0,1g, is smaller thanp. The
selection of nodes to be connected is performed according to
the following architectures: PAT, RAN, SHR, or LNR. In the
PAT networks, the connections follow a preferential attach-
ment scheme as described in the following. The probability
to choose a node to implement a connection depends linearly
on the number of connections of that node. Our procedure
begins with the same probability for all nodes and new con-
nections are added progressively. This procedure results in a
network with few highly connected nodes and many poorly
connected nodesfFig. 1sadg. For RAN networks, two nodes
are selected at random for respective connectionfFig. 1scdg.
The construction of the SHR and LNR networks are similar
but follow oppositesEuclideand distance-based criteria. First,
we elaborate a list of all possible pairs of nodes. This list is
sorted in decreasing distance order for the SHR network and
in increasing order for the LNR network. Then we select a
pair of nodes randomly, e.g., theith pair of the list,
if expf−i / sTNdg is greater than a random number, uniformly
distributed betweenf0,1g, then the nodes are connected, oth-
erwise no action is taken.T is a dimensionless parameter that
controls the distribution of edge lengths. Small values ofT
produce networks that adhere more closely to the imposed
criteria, while a RAN architecture is obtained for very large
values ofT fsee Figs. 1sbd and 1sddg. In this paper we set
T=0.1 in order to retain some longer or shorter range intra-
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modular connections for SHR and LNR networks, respec-
tively. For all cases the boundary conditions of modules are
opensi.e., nonperiodicald.

Random and topographical schemes were considered for
the intermodular connectionssIMCd. In the topographical
case, the IMC between neurons in the two cortical modules
A and B are established according to the following rule: each
neuron in module A connects in a directed way to the nearest
neuron in module B with probabilityb. The nearest neighbor
condition is ignored in the case of the random model. There-
fore, the probabilityb controls the degree of topographical
coupling between the two modules, with complete mapping
being achieved forb=1. The two modules A and B are ad-
jacent and they are separated by a distancea, so that nodes in
B do not overlap with nodes in Assee Figs. 2 and 3d. Both
topographical and random IMC models were implemented

regarding bidirectional or unidirectional connections. In the
bidirectional case, there exist directed connections from
nodes of module A to nodes of module B, and vice versa
from B to A, while for unidirectional connections, there exist
directed connections solely from nodes of module B to nodes
in module A.

The following measurements were used in this work in
order to quantify several properties of the considered com-
plex networks.

Node degree. The degree of nodei, henceforth denoted as
ki, is defined as the number of connections between nodei
and other nodes. The average valuekkl provides some indi-
cation about the network local connectivity.

Clustering coefficient. Given a nodei, the set ofM nodes
to which it is connected can be identified and represented as
S. The total number of possible connections between the
nodes in that set is therefore given asT=MsM −1d /2. If the
number of connections between the nodes inS is P, the
clustering coefficient ofi is calculated asCi =P/T. The mean
clustering coefficientkCl of the network is given by the av-
erage value ofCi considering every node.

Shortest path length. Let i and j be two network nodes
with at least one path fromi to j . The shortest path, di,j,
between these nodes is defined as the minimal total sum of
edge lengths connectingi to j . When there are no paths from
i to j , we setdi,j =sN−1dÎs2L2+a2d in order to penalize the
accessibility in that case. The two possible alternatives to use
0 or infinity in such cases were not adopted because, while
the former option would imply no distance, the latter makes
the calculations impossible. The average of this measure-
ment, denoted bykdl, can be used to characterize the acces-
sibility between two nodes in terms of Euclidean arc length.
For the unidirectional case the averaging procedure is ap-
plied over di,j such thati and j are nodes from B and A
layers, respectively, as illustrated in Fig. 2; while for the
bidirectional case we calculate the average over all pairs of
nodes without any restrictions.

Path degree. Is the fraction of pairs of nodes without any
path between them. Represented henceforth askpl, this mea-
surement provides complementary information about the ac-
cessibility between nodes.

III. RESULTS

One hundred realizations of each model were obtained by
simulations consideringL=128 pixels,g=0.02, p=0.1 and
0.3. For short range networks, we usedT=0.1, while the
values ofb vary from 0.1 to 0.9. The adopted module sepa-
ration wasa=8 pixels, similar to the typical distance be-
tween neighboring nodes inside a module.

Figures 4 and 5 show the average shortest path lengthkdl
as a function of the unidirectional IMC intensity quantified
by b, for p=0.1 andp=0.3, respectively. The valueskdl
decrease linearly in the PAT and LNR architecturesfFigs.
4sad, 4sbd, 5sad, and 5sbdg, while the RAN and SHR architec-
tures present an exponential decay ofkdl when b increases
fFigs. 4scd, 4sdd, 5scd, and 5sddg. The IMC type, either topo-
graphical or random, influences the behavior ofkdl in a se-

FIG. 1. Diagram representing the four typical network modules
used in this work: preferential attachmentsad, long rangesbd, ran-
dom scd, and short rangesdd. The spatial distribution of nodes is the
same for all diagrams. We consideredL=50, p=0.1, g=0.01 si.e.,
N=25 nodesd, andT=0.03 for the casessbd and sdd.

FIG. 2. Diagram representing unidirectional topographical con-
nectionssdashed linesd from nodes of module B to nodes of module
A, which are separated by distancea.
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lective manner, depending on the connectivity model
adopted for the modules. For example, in PAT and LNR
architectures the behavior ofkdl for random IMC is essen-
tially undistinguishable from the topographical IMC case.
The greatest difference appears for RAN and SHR architec-
tures: in these cases the topographical connections have a
lower average shortest path than the corresponding random
IMC. The difference between topographical and random
IMC is more evident in the RAN architecture forp=0.1. In
addition, whenp increases from 0.1 to 0.3,kdl decreases by
about 20% in the RAN architecture for both topographical

and random IMCs, while in the SHR architecturekdl does
not present significant changes. This is in contrast to the
strong decrease inkdl whenp increases from 0.1 to 0.3 in the
PAT and LNR architectures, particularly in the latter case,
which always showedkdl higher than the former.sSee also
Figs. 6 and 7.d

Figures 6 and 7 display the average shortest path length,
kdl as a function of the IMC intensityb, for p=0.1 andp
=0.3 respectively, regarding bidirectional connections. We
observe that the IMC type, either topographical or random,
influences the behavior ofkdl in a selective manner, depend-
ing on the modular architecture. In particular,kdl associated
to random IMC is lower than that corresponding to topo-
graphical IMC only for the SHR architecture. In the case of
the other modular architectures there are no great differ-
ences. In a similar way to the unidirectional case,kdl de-
creases linearly in the PAT and LNR architecturesfFigs. 6sad,
6sbd, 7sad, and 7sbdg, and exponentially in the RAN and SHR
architecturesfFigs. 6scd, 6sdd, 7scd, and 7sddg. In addition, we
observe that topographical IMC decays slower than random
IMC. The difference between the two types of IMC is more
definite in the SHR architecture forp=0.3. We also note that
an increase ofp values from 0.1 to 0.3 in the PAT and LNR
architectures, particularly in the latter, tends to enhance ac-
cessibility between the network nodes in those modelsfFigs.
6sad, 6sbd, 7sad, and 7sbdg. This effect is substantially weaker
in the RAN architecturesparticularly in the topographical
IMCd, and almost null in the SHR architecture both for to-
pographical and random IMCs.

FIG. 3. Diagram representing two network modulessA and Bd
separated by distancea and connected bidirectionally by topo-
graphical connectionssdashed linesd.

FIG. 4. The average and standard deviation of the shortest path
lengths for unidirectional IMC networks withp=0.1. We consider
four different modular architectures: preferential attachmentsad,
long rangesbd, randomscd, and short rangesdd. Filled squares cor-
respond to topographic IMC and open circles to random IMC. The
scale of the vertical axes insbd andsdd panels are the same as insad
and scd, respectively.

FIG. 5. The average and standard deviation of shortest path
lengths for unidirectional IMC networks withp=0.3. We consider
four different modular architectures: preferential attachmentsad,
long rangesbd, randomscd, and short rangesdd. Filled squares cor-
respond to topographic IMC and open circle to random IMC. The
scale of the vertical axes ofsbd andsdd panels are the same as that
of sad and scd, respectively.
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The properties characterized by the node degree, path de-
gree, and clustering coefficient did not show significant dif-
ferences between topographic and random realizations of the
IMC. However, we observed different values of path degree
produced by the PAT and LNR when compared to the other
two network types. In particular, path degrees tend to be
considerably higher in the PAT and LNR than in SHR and
RAN networks, which implies a higher standard deviation
Dd sdisplayed as errors bars in Figs. 3–7d. Figure 8 displays
the scatter plots ofkpl in terms of the standard deviationDd
of the shortest path length. We observe that the fraction of
pairs of nodes without any path connecting them is smaller
in the LNR networks than in PAT networks. Moreover,kpl
suffers the influence of directionalitysuni- or bidirectionald
in the PAT networks but not in the LNR case. In the latter
case, random IMC seems to be more efficient than topo-
graphical for both unidirectional and bidirectional cases. The
measurementskpl for RAN and SHR networks are small and
almost independent of the IMC type,p andb valuessfor the
values considered hered, while in PAT networkskpl de-
creases withb andp.

Our simulations suggest that topographical networks are
more effective in terms of minimal wiring only for the RAN
and SHR architectures with unidirectional IMCs. However,
opposite conclusions were reached regarding bidirectional
IMCs, except for the RAN architecture for lowp and b.
Furthermore, the cortical architectures obtained for the short
range networks are, in general, more effective in the sense of

minimal wiring than random networks, and less sensitive to
the IMC intensity.

IV. CONCLUSIONS

An interesting conclusion from our experiments is that the
PAT and LNR models, irrespective ofp or the directionality
of the mappings, are little affected by the type of map be-
tween modules, either random or topographical. In other
words, in case the intracortical connections are PAT or LNR,
there is little advantage in using topographical maps as the
means for getting overall shorter connections. In that case,
topographical maps would need to be biologically justified in
some other way. Still regarding the PAT and LNR models,
the average shortest path has been found to be always
smaller for the former, but such an advantage tends to dimin-
ish with p. Therefore, preferential-attachment networks such
as those considered in this work are particularly efficient for
obtaining shortest path connections between two cortical
modules irrespective of the type of connectionsi.e., random
or topographicald.

A completely different scenario has been identified for the
RAN and SHR models, in the sense that the type of connec-
tion between modules tended to influence more definitely the
respective average shortest paths. Generally, the SHR tended
to have average shortest pathkdl smaller than for RAN net-
works. Substantial differences ofkdl as consequence of ran-
dom or topographical connections were observed for the

FIG. 6. The average and standard deviation of shortest path
lengths for bidirectional IMC networks withp=0.1. We consider
four different modular architectures: preferential attachmentsad,
long rangesbd, randomscd, and short rangesdd. Filled squares cor-
respond to topographic IMC and open circles to random IMC. The
scale of the vertical axes ofsbd andsdd panels are the same as that
of sad and scd, respectively.

FIG. 7. The average and standard deviation of the shortest path
lengths for bidirectional IMC networks withp=0.3. We consider
four different modular architectures: preferential attachmentsad,
long rangesbd, randomscd, and short rangesdd. Filled squares cor-
respond to topographic IMC and open circles to random IMC. The
scale of the vertical axes insbd andsdd panels are the same as insad
and scd, respectively.
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SHR model with bidirectional maps and highp, with the
random connections leading to smaller shortest path values
than the topographical casefsee Figs. 6sdd and 7sddg. How-
ever, the greatest differences ofkdl were obtained for the
RAN networks with unidirectional maps and for smallerp
fsee Figs. 4scd and 5scdg. Interestingly, the topographical con-
nections allowed substantially shortest paths in this case.
This effect was also verified, to a lesser degree, for the RAN
with higher p. From the biological perspective, such results
indicate in the case of SHR and RAN cortical modules, that

the topographical maps lead to substantially smaller values
of average shortest paths when one considers unidirectional
maps. In this sense, the existence of unidirectional topo-
graphical connections in the cortex could be understood as
being compatible with random and/or short range intracorti-
cal connections, which are the connectivity schemes found to
benefit the most from such a kind of mapping.

The main implications for cortical function and organiza-
tion of the findings reported in the current work are dis-
cussed in the following. First, it is clear that topographical
connections, even at moderate levels, can affect the proper-
ties of the involved modules. Indeed, the addition of a few
short length connections between the two topographically
organized modules can considerably enhance the accessibil-
ity between any two nodes in the resulting structure, reduc-
ing the shortest path between pairs of neurons, with the con-
sequent improvement of time accessibility. Such
enhancements imply that information can be exchanged and
broadcasted more effectively between the neurons of the re-
sulting topographically connected network than in the corti-
cal modules taken isolated.

The intrinsic properties of topographical connections sug-
gest that the many cortical regions involving such a commu-
nication could therefore account for one of the explanations
for this ubiquitous and peculiar aspect of cortical architec-
ture, enhancing accessibility while minimizing the length of
the IMC, while also preserving spatial adjacency. More gen-
eral conclusions considering the whole cortex are precluded
by the fact that the cortical morphology and mapping seem
to vary from species to species and from region to region
se.g.,f8,23gd. At the same time, the use of the concepts and
results reported in this paper provides an interesting tool for
investigating and interpreting each of such cases. Consider-
ing that topographical connections coexist with lateral con-
nections at intramodular level, the above proposed method-
ology can also be immediately extended to investigate the
possible implications of such connections along the cortical
modules inside the same module. The consideration of topo-
graphical connections between other types of spatially-
constrained complex networks can also be considered as a
means of enhancing information exchange.
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